Distribution Behavior of 2-Methyl-5-hexyloxymethyl-8-quinolinol between Supercritical CO₂ and Water

Kousaburo Ohashi, Nobuhiro Ishikawa, Sung-Yong Choi, Hisanori Imura, and Takeshi Oriyama *Department of Environmental Sciences, Faculty of Science, Ibaraki University, Mito 310-8512*

(Received September 29, 1999, CL-990838)

The distribution constants $(K_{D, \text{SF CO2}})$ of 2-methyl-5-hexyloxymethyl-8-quinolinol ($HMO₆Q$) between supercritical (SF) CO₂ and water were determined at $I = 0.1$ M (H,Na)NO₃ (1 M) $= 1 \text{ mol dm}^{-3}$), 45 °C and 8.6 - 20.4 MPa. The log $K_{D, \text{SE CO2}}$ values at 8.6, 12.2, 15.7, and 20.4 MPa were 1.18 ± 0.13 , 1.76 \pm 0.14, 2.18 \pm 0.17, and 3.02 \pm 0.21, respectively. The $K_{D, \text{SF CO2}}$ value at 20.4 MPa was about one tenth of that (log $K_D = 4.08 \pm 1.08$ 0.02) for the heptane-water system at 45 °C and an atmosphere.

A solvent-extraction teqnique has been widely used for the pre-concentration and separation of metal ions with extractants in the fields of analytical chemistry, radiochemistry, and hydrometallurgy. More recently, a SF $CO₂$ extraction method as a separation technique of metal ions has been an attractive and potential technique because of easy removal of $CO₂$ from extracts.¹⁻⁵ In addition, $CO₂$ is characterized by non toxicity and moderate critical constants ($T_c = 32 \text{ °C}$, $P_c = 7.3 \text{ MPa}$). We previously reported that gallium(III) was selectively separated from aluminum(III) with HMO_6Q into SF CO₂.⁶

Until now there have been few reports on the SF extraction equilibrium of metal chelates.⁷ Accordingly, to develop a systematic SF CO₂ separation system for metal ions with chelating extractants, basic data, such as distribution constants of extractants between $SFCO₂$ and water, are essential to determine the SF extraction constants.

In order to determine the distribution constant of acidic chelating extractants between $SFCO₂$ and water, the pH value of an aqueous phase contacting with $SFCO₂$ should be precisely determined. Indeed, it is fairly difficult to directly measure the pH of an aqueous solution equilibrated with SF $CO₂$ in a high-pressure extraction cell.

In this study, the pH of an acidic solution contacting with SF CO₂ was indirectly and precisely measured by spectrometry according to Wai's method.⁸ Furthermore, the distribution constants of $HMO₆Q$ between SF CO₂ and water were determined at $I = 0.1$ M (H, Na)NO₃, 45 °C, and 8.6 - 20.4 MPa.

 $HMO₆Q$ was prepared by our previous method.⁹ All other chemicals were of analytical reagent grade.

SF CO₂ extractions were carried out by an apparatus composed of syringe pump (Isco, Model 500D), a pump controller (IASC, Series D), back-pressure regulator (JASCO 880-81), a 50-ml high-pressure stainless-steel extraction cell, and a UV/VIS absorption spectrophotometer (JASCO MD-910) with a high-pressured cell (0.2 ml, 1 cm in length) (Figure 1). The spectrophotometric cell was thermostated by circulating water from a thermostated water bath. The extraction cell was thermostated by a muntle heater with a temperature controller (Omron R5BX). The temperature of the extraction cell and the spectrophotometric cell were monitored with a digital temperature indicator (Fenwal). The pressure of the extraction cell was

Figure 1. Apparatus for the extraction with supercritical CO₂. 1, Syringe pump and controller; 2, liquid CO₂ cylinder; 3, N₂ cylinder; 4, sample; 5, stop valve; 6, extraction cell; 7, magnetic stirrer; 8, pressure probe; 9, tem.indicator; 10, UV-vis spectrophotometer; 11, back pressure regulator; 12, oven, 13, CO₂ and N₂.

monitored with a digital pressure indicator (Toyo Sokki). The pH of an aqueous phase in contact with an atmosphere was measured using a pH meter with a glass electrode thermostated at 45 °C.

Bromophenol blue (BPB) gives the absorption maxima at 435 and 591 nm in a weakly acidic solution. Wai et al. have proved that plots of A_{435nm}/A_{591nm} *vs.* [H⁺] gave a straight line under the given conditions, where A_{435nm} and A_{591nm} are the absorbances at 435 nm and 591 nm, respectively. It was also found that the plots of A_{435nm}/A_{591nm} *vs.* [H⁺] for thymol blue gave a straight line. The pH of an aqueous solution in contact with SF $CO₂$ can be determined by comparing with a calibration curve prepared without contacting with SF $CO₂$. Before preparing the calibration curve, the stability of BPB in an aqueous solution contacting with SF CO₂ for 45 min at 45 \degree C and 8.6 MPa was tested. BPB decomposed very slightly. Consequently, the contact time of $SFCO$, was maintained for 15 min. By contacting $SF CO$, with an aqueous solution, the absorbance at 435 nm increased and that at 591 nm decreased. The spectral change should be ascribed to a change in the pH of the aqueous solution due to the dissolution of $CO₂$.

The relationship between the hydrogen ion concentration of the aqueous phase before contact with $SFCO₂$ and that in contact with SF $CO₂$ is shown in Figure 2. Below pH 3, the pH change is negligibly small. On the other hand, above pH 3, the pH of the aqueous phase in equilibrium with SF CO₂ was levelled to about 3. The pH value of the aqueous phase equilibrated with SF $CO₂$ can be evaluated within an experimental error of 0.1 using Figure 2.

The procedure for the determination of the distribution of $HMO₆Q$ between SF CO₂ and water was as follows, 10 ml of an aqueous acidic solution of 1.00 x 10^{-5} M HMO₆Q was taken in the extraction cell. A syringe pump was filled with $CO₂$

(99.99% purity) from a liquid $CO₂$ cylinder and then pressurized by the pump controller. Pressurized liquid $CO₂$ was introduced into the pre-heated extraction cell. The extraction was carried out under the stirring of the aqueous solution containing HMO_cQ . After 15 min, the outlet valve was opened while regulating the cell pressure by back-pressure regullator and the absorption spectrum of the aqueous phase was measured. Since the ratio of the aqueous phase to the $SFCO₂$ volume is 1 : 4, the distribution ratio (*D*) was calculated by using

$$
D = (A_0 - A_{\text{eq}}) / 4 A_{\text{eq}}, \qquad (1)
$$

where, A_{ρ} and A_{ρ} are the absorbances at 275.5 nm in the aqueous phase before and after the distribution, respectively.

The absorption maxima of HMO_cQ in SF CO₂ appeared at 310 and 240 nm and the absorption spectra are very similar to those in heptane. The extraction equilibrium of $HMO₆Q$ between $SFCO₂$ and an acidic aqueous phase can be represented as follows:

 $SFCO₂$

Aqueous phase

where K_{a1} is the acid-dissociation constant of $H_2MO_6Q^+$ in an aqueous phase. Equation (2) was used to determine K_{a1} and $K_{D,SE\ CO2}$. If plots of log $D_{SE\ CO2}$ *vs*. pH are possible in the pH

$$
D_{\rm SF\,CO2} = K_{D,\rm SF\,CO2} / ([\rm H^+] \, K_{\rm al}^{-1} + 1), \tag{2}
$$

range of 1 - 8, both K_{a1} and $K_{D,SF,CO2}$ can be simultaneously determined. However, as mentioned above, the acidity of a weakly acidic solution ($pH > 3$) contacted with SF CO₂ is levelled to about pH 3 by CO_2 dissolved in the aqueous phase Therefore K_{a1} and $K_{D,SF,CO2}$ cannot be simultaneously deterrnined by plots of $\log D_{\rm SF\,CO2}$ *vs.* pH.

Figure 2. Relationship between - log[H+] before contact with SF CO₂ and - log[H⁺] after contact with SF CO₂.

 \bullet : Bromophenol blue, 2.27 × 10⁻⁵ M; CO₂, 8.6 MPa,

 \triangle : Bromophenol blue, 2.27 × 10⁻⁵ M; CO₂, 15.7 MPa, \Box : Thymol blue, 5.12×10^{-5} M; CO₂, 8.6 MPa.

Table 1. Distribution constants of $HMO₆O$ at 45[°]C

$log K_D$
1.18 ± 0.13^a
1.76 ± 0.14^b
2.18 ± 0.17 °
3.02 ± 0.21 ^d
4.08 ± 0.02

 $I = 0.1 M (H, Na) NO₃.$

^a8.6 MPa; ^b12.2 MPa; °15.7 MPa; ^d20.4 MPa.

If K_{a1} is known, $K_{D, \text{SF CO2}}$ can be determined by applying a nonlinear least-squares method based on Equation (2) to plots of $\log D_{\rm SF\,CO2}$ *vs.* pH. The slope of the straight line of the plots of $\log D_{\rm SF\,CO2}$ *vs.* pH should be one. The $\log D_{\rm SF\,CO2}$ value at a pH value equal to pK_{a1} corresponds to the logarithmic value of $K_{D, \text{SF CO2}}$, where the pH values of the aqueous phase equilibrated with SF $CO₂$ were determined from the data shown in Figure 2. The K_{a1} value of HMO₆Q was independenly determined by plotting log *D vs.* pH for a heptane - water system. The p K_{a1} value for HMO₆Q was 4.89 at $I = 0.1$ M (H, Na)NO₃ and 45^{\degree}C. The plots of log $D_{\rm SF\ CO2}$ *vs.* pH for HMO₆Q-SF $CO₂$ - water system gave a straight line with a slope of one below pH 3. The $K_{D, \text{SF CO2}}$ value was determined by the abovementioned procedure, assuming that the effect of the pressure on the K_{a1} value is negligibly small under the experimental conditions. The results are shown in Table 1 along with the K_D value of $HMO₆Q$ between heptane and water. The $K_{D,SF}$ co₂ values increased with an increase in the SF CO₂ pressure. The increase of the $K_{D, \text{SF CO2}}$ values should be ascribed to the increase of the density of $SFCO₂$.

A $K_{DSE CO2}$ value at 20.4 MPa for HMO₆Q was about one tenth of the K_D for heptane - water system, indicating that the solubility of $\widetilde{HMO}_{6}Q$ in SF CO₂ is remarkably smaller compared with that in heptane.

The systematic study on the distribution behavior of chelating extractants is under way now.

This work was supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sports and Culture of Japan .

References

- 1 K. E. Laintz, C. M. Wai, C. R. Yonker, and R. D. Smith, *Anal. Chem.*, **64**, 2875 (1992).
- 2 Y. Lin, R. D. Brauer, K. E. Laintz, and C. M. Wai, *Anal. Chem.*, **65**, 2549 (1993).
- 3 Y. Lin, C. M. Wai, F. M. Jean, and R. D. Brauer, *Environ. Sci. Technol*., **28**, 1190 (1994).
- 4 S. Iso, Y. Meguro, and Z. Yoshida, *Chem. Lett.*, **1995**, 365.
- 5 Y. Meguro, S. Iso, and Z. Yoshida, *Anal. Chem.*, **70**, 1262 (1998).
- 6 K. Ohashi and K. Tatenuma, *Chem. Lett.*, **1997**, 1135.
- 7 J. M. Murphy and C. Erkey, *Ind. Eng. Chem. Res.*, **36**, 5371 (1997).
- 8 K. L. Toews, R. M. Shroll, and C. M. Wai, *Anal. Chem.*, **67**, 4040 (1995).
- 9 K. Ohashi, R. Iwata, S. Mochizuki, H. Imura, K. Hiratani, and H. Sugihara, *Talanta*, **43**, 1481 (1996).